Лекция 18. Разработка чат-ботов
Системы искусственного интеллекта, которые действуют как интерфейсы для взаимодействия человека и машины посредством текста или голоса, называются чат-ботами.
Взаимодействие с чат-ботами может быть как простым, так и сложным. Примером прямого взаимодействия может быть вопрос о последних новостях. Взаимодействия могут стать более сложными, когда речь идет об устранении неполадок, скажем, с вашим телефоном Android. Термин «чат-боты» приобрел огромную популярность в прошлом году и превратился в наиболее предпочтительную платформу для взаимодействия и взаимодействия с пользователями. Бот, расширенная форма чат-бота, помогает автоматизировать «выполняемые пользователем» задачи.
Эта глава о чат-ботах послужит всеобъемлющим руководством к тому, что, как, где, когда и почему чат-боты!
В частности, я расскажу о следующем:
· Почему вы хотели бы использовать чат-ботов
· Дизайн и функции чат-ботов
· Шаги по созданию чат-бота
· Разработка чат-ботов с использованием API
· Лучшие практики чат-ботов

17.1. Почему чат-боты?
Чат-боту важно понимать, какую информацию ищет пользователь, что называется намерениями. Предположим, пользователь хочет узнать ближайший вегетарианский ресторан; пользователь может задать этот вопрос многими возможными способами. Чат-бот (в частности, классификатор намерений внутри чат-бота) должен понимать намерения, потому что пользователь хочет получить правильный ответ. На самом деле, чтобы дать правильный ответ, чат-бот должен понимать контекст, намерения, сущности и настроения. Чат-бот должен даже учитывать все, что обсуждается на сеансе. Например, пользователь может задать вопрос «Сколько там стоит курица бирьяни?»
Хотя пользователь запросил цену, движок чата может неправильно понять и предположить, что пользователь ищет ресторан. Так, в ответ чат-бот может предоставить название ресторана.
17.2. Дизайн и функции чат-ботов
Чат-бот стимулирует интеллектуальные разговоры с людьми с помощью применения ИИ.
Интерфейс, через который происходит разговор, упрощается с помощью устного или письменного текста. Facebook Messenger, Slack и Telegram используют платформы для обмена сообщениями чат-ботов. Они служат многим целям, включая заказ товаров в Интернете, инвестирование и управление финансами и так далее. Важным аспектом чат-ботов является то, что они позволяют вести контекстную беседу. Чат-боты общаются с пользователями так же, как люди общаются в повседневной жизни. Хотя чат-боты могут общаться в контексте, им еще предстоит пройти долгий путь с точки зрения контекстного общения со всем и чем угодно.
Но интерфейсы чата используют язык, чтобы соединить машину с человеком, помогая людям делать что-то удобным способом, предоставляя информацию в контекстной манере.
Более того, чат-боты меняют способ ведения бизнеса. От обращения к потребителям до их приветствия в бизнес-экосистеме для предоставления потребителям информации о различных продуктах и ​​их функциях — чат-боты помогают во всем этом.
Они становятся наиболее удобным способом своевременного и удовлетворительного взаимодействия с потребителями.
17.3. Шаги по созданию чат-бота
Чат-бот создан для общения с пользователями и создания у них ощущения, что они общаются с человеком, а не с ботом. Но когда пользователи вводят данные, обычно они не вводят их должным образом.
Другими словами, они могут поставить ненужные знаки препинания или могут быть разные способы задать один и тот же вопрос.
Например, для «Рестораны рядом со мной?» пользователь мог ввести «Рестораны рядом со мной?» или «Найди ближайший ресторан».
Поэтому вам необходимо предварительно обработать данные, чтобы движок чат-бота мог легко их понять. На рис. 11-1 показан процесс, подробно описанный в следующих разделах.
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Рисунок 17-1. Блок-схема, показывающая, как механизм чат-бота обрабатывает входную строку и дает правильный ответ.
17.3.1. Предварительная обработка текста и сообщений
Предварительная обработка текста и сообщений включает несколько шагов, описанных далее.
17.3.1.1. Токенизация
Разбиение предложений на отдельные слова (называемые токенами) называется токенизацией. В Python обычно строка токенизируется и сохраняется в списке.
Например, предложение «Искусственный интеллект — это применение математики» становится следующим:
["искусственный", "интеллект", "есть", "все", "о", "прикладывание", "математика"]
Вот пример кода:
from nltk.tokenize import TreebankWordTokenizer
l = "Artificial intelligence is all about applying mathematics"
token = TreebankWordTokenizer().tokenize(l)
print(token)

17.3.1.2. Удаление знаков препинания
Вы также можете удалить ненужные знаки препинания в предложениях.
Например, предложение «Могу ли я получить список ресторанов, в которых есть доставка на дом» становится следующим:
«Могу ли я получить список ресторанов, которые дают домой
Доставка. "

Вот пример кода:
from nltk.tokenize import TreebankWordTokenizer
from nltk.corpus import stopwords
l = "Artificial intelligence is all about applying
mathematics!"
token = TreebankWordTokenizer().tokenize(l)
output = []
output = [k for k in token if k.isalpha()]
print(output)

17.3.1.3. Удаление стоп-слов
Стоп-слова — это слова, присутствующие в предложении, которые не имеют большого значения разница, если удалить. Хотя формат предложения меняется, это очень помогает в понимании естественного языка (NLU).
Например, предложение «Искусственный интеллект может изменить образ жизни людей». становится следующим после удаления стоп-слов:
«Искусственный интеллект меняет образ жизни людей».
Вот пример кода:
from nltk.tokenize import TreebankWordTokenizer
from nltk.corpus import stopwords
l = "Artificial intelligence is all about applying mathematics"
token = TreebankWordTokenizer().tokenize(l)
stop_words = set(stopwords.words('english'))
output= []
for k in token:
if k not in stop_words:
output.append(k)
print(output)

Какие слова считаются стоп-словами, могут варьироваться. Есть некоторые предопределенные наборы стоп-слов, предоставляемые Natural Language Toolkit (NLTK), Google и т. д.
17.4. Распознавание именованных объектов
Распознавание именованных сущностей (NER), также известное как идентификация сущностей, представляет собой задачу классификации сущностей в тексте по предопределенным классам, таким как название страны, имя человека и т. д. Вы также можете определить свои собственные классы.
Например, применение NER к предложению «Сегодняшний матч по крикету между Индией и Австралией был фантастическим». дает вам следующий вывод:
[Сегодня] Время [Индия] Страна против [Австралия] Страна
[крикет] Игровой матч был фантастическим.

Чтобы запустить код для NER, вам нужно загрузить и импортировать необходимые пакеты, как указано в следующем коде.
17.4.1. Использование Стэнфордского NER
Чтобы запустить код, загрузите файлы english.all.3class.distsim.crf.ser.gz и stanford-ner.jar.
from nltk.tag import StanfordNERTagger
from nltk.tokenize import word_tokenize
StanfordNERTagger("stanford-ner/classifiers/english.all.3class.
distsim.crf.ser.gz",
"stanford-ner/stanford-ner.jar")
text = "Ron was the founder of Ron Institute at New york"
text = word_tokenize(text)
ner_tags = ner_tagger.tag(text)
print(ner_tags)

17.4.1.1. Использование MITIE NER (предварительно обученный)
Загрузите файл ner_model.dat MITIE, чтобы запустить код.
from mitie.mitie import *
from nltk.tokenize import word_tokenize
print("loading NER model...")
ner = named_entity_extractor("mitie/MITIE-models/english/
ner_model.dat".encode("utf8"))
text = "Ron was the founder of Ron Institute at New york".
encode("utf-8")
text = word_tokenize(text)
ner_tags = ner.extract_entities(text)
print("\nEntities found:", ner_tags)
for e in ner_tags:
range = e[0]
tag = e[1]
entity_text = " ".join(text[i].decode() for i in range)
print( str(tag) + " : " + entity_text)

17.4.1.2. Использование MITIE NER (самообучаемый)
Загрузите файл total_word_feature_extractor.dat MITIE (https://github.com/mit-nlp/MITIE), чтобы запустить код.
from mitie.mitie import *
sample = ner_training_instance([b"Ron", b"was", b"the", b"founder",
b"of", b"Ron", b"Institute", b"at", b"New", b"York", b"."])
sample.add_entity(range(0, 1), "person".encode("utf-8"))
sample.add_entity(range(5, 7), "organization".encode("utf-8"))
sample.add_entity(range(8, 10), "Location".encode("utf-8"))
trainer = ner_trainer("mitie/MITIE-models/english/total_word_
feature_extractor.dat".encode("utf-8"))
trainer.add(sample)
ner = trainer.train()
tokens = [b"John", b"was", b"the", b"founder", b"of", b"John",
b"University", b"."]
entities = ner.extract_entities(tokens)
print ("\nEntities found:", entities)
for e in entities:
range = e[0]
tag = e[1]
entity_text = " ".join(str(tokens[i]) for i in range)
print (" " + str(tag) + ": " + entity_text)

17.4.2. Классификация намерений
Классификация намерений — это шаг в NLU, на котором вы пытаетесь понять, чего хочет пользователь. Вот два примера ввода чат-бота для поиска мест поблизости:
• «Мне нужно купить продукты». Намерение состоит в том, чтобы найти поблизости продуктовый магазин.
• «Я хочу есть вегетарианскую еду». Намерения состоят в том, чтобы искать поблизости рестораны, в идеале вегетарианские.
По сути, вам нужно понять, что ищет пользователь, и соответственно отнести запрос к определенной категории намерений (рис. 17-2).
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Рисунок 17-2. Общий поток классификации намерений, от предложений к векторам к модели
Для этого нужно обучить модель классифицировать запросы по намерениям с помощью алгоритма, переходя от предложений к векторам к модели.
17.4.3. Вложение слов
Встраивание слов — это метод преобразования текста в числа. Трудно применить какой-либо алгоритм в тексте. Следовательно, вы должны преобразовать его в числа.
Ниже приведены различные типы методов встраивания слов.
17.4.3.1. Граф вектор
Предположим, у вас есть три документа (D1, D2 и D3) и N уникальных слов в группе документов. Вы создаете матрицу (D × N), называемую C, которая известна как вектор счета. Каждая запись матрицы — это частота уникального слова в этом документе.
Давайте посмотрим на это на примере.
D1: Пуджа очень ленивая.
D2: Но она умна.
D3: Она почти не приходит в класс.

Здесь D = 3 и N = 12.
Уникальные слова: вряд ли, ленивый, Но, чтобы, Пуджа, она, умная, приходит, очень, класс, и есть.
Следовательно, вектор счета C будет следующим:
Вряд ли самая ленивая, но к Пудже она умна, она очень классная.
Д1 0 1 0 0 1 0 0 0 1 0 1
Д2 0 0 1 0 0 1 1 0 0 0 1
Д3 1 0 0 1 0 1 0 1 0 1 0

Частота термина, обратная частоте документа (TF-IDF)
Для этого метода вы даете каждому слову в предложении номер в зависимости от того, сколько раз это слово встречается в этом предложении, а также в зависимости от документа. Слова, встречающиеся много раз в предложении и не так много раз в документе, будут иметь высокие значения.
Например, рассмотрим набор предложений:
· "Я мальчик."
· "Я девушка."
· "Где вы живете?"
TF-IDF преобразует набор функций для предыдущих предложений, как показано здесь:
     Am  Boy Girl Где ты живешь?
1.  0,60   0,80   0     0    0    0     
2.  0,60     0    0,80  0    0    0    
3.   0          0       0   0,5 0,5 0,5 

Вы можете импортировать пакет TFIDF и использовать его для создания этой таблицы.
Теперь давайте посмотрим на пример кода. Вы можете использовать классификатор опорных векторов для преобразованных TF-IDF признаков строки запроса.
#import required packages
import pandas as pd
from random import sample
from sklearn.preprocessing import LabelEncoder
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import SVC
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, accuracy_score
# read csv file
data = pd.read_csv("intent1.csv")
print(data.sample(6))

Прежде чем продолжить работу с кодом, вот пример набора данных:
Описание (Сообщение) намерение_метка (Цель)
Рядом со мной хороший невегетарианский ресторан 0
ищу больницу 1
Хорошая больница для операции на сердце 1
Международная школа для детей 2
Невегетарианский ресторан рядом со мной 0
Школа для маленьких детей 2

В этом примере используются следующие значения:
· 0 означает поиск ресторана.
· 1 означает поиск больницы.
· 2 означает поиск школы.
Теперь давайте поработаем с набором данных.
# разделить набор данных на обучающий и тестовый.
X_train, X_test, Y_train, Y_test = train_test_split (данные
["Описание"], данные ["метка_намерения"], test_size = 3)
печать (X_train.shape, X_test.shape, Y_train.shape, Y_test.shape)
# векторизовать ввод, используя значения tfidf.
tfidf = TfidfВекторизатор ()
tfidf = tfidf.fit (X_train)
X_train = tfidf.transform (X_train)
X_test = tfidf.transform (X_test)
# кодировка меток для разных категорий намерений
le = LabelEncoder().fit(Y_train)
Y_train = le.transform (Y_train)
Y_test = le.transform (Y_test)
# другие модели, такие как GBM, Random Forest, также могут использоваться
модель = СВК ()
модель = model.fit (X_train, Y_train)
p = model.predict (X_test)
# рассчитать f1_score. среднее = "микро", так как мы хотим
рассчитать балл для мультикласса.
# Каждый экземпляр (а не класс (поиск среднего макроса))
в равной степени способствуют подсчету очков.
print ("f1_score:", f1_score (Y_test, p, среднее = "микро"))
print("accuracy_score:", точность_score (Y_test, p))

17.5. Word2Vec
Существуют разные методы получения векторов слов для предложения, но основная теория, лежащая в основе всех методов, заключается в том, чтобы дать похожим словам аналогичное векторное представление. Таким образом, такие слова, как «мужчина», «мальчик» и «девочка», будут иметь похожие векторы. Длина каждого вектора может быть установлена. Примеры методов Word2vec включают GloVe и CBOW (n-gram с пропуском грамма или без него).
Вы можете использовать Word2vec, обучив его для своего собственного набора данных (если у вас достаточно данных для решения задачи), или вы можете использовать предварительно обученные данные. Word2vec доступен в Интернете. Предварительно обученные модели были обучены на огромных документах, таких как данные Википедии, твиты и т. д., и они почти всегда хорошо справляются с задачей.
Пример некоторых техник, которые вы можете использовать для тренировки классификатора своих намерений должен использовать 1D-CNN для векторов слов в предложении, добавленных в список для каждого предложения.
# import required packages
from gensim.models import Word2Vec
import pandas as pd
import numpy as np
from keras.preprocessing.text import Tokenizer
from keras.preprocessing.sequence import pad_sequences
from keras.utils.np_utils import to_categorical
from keras.layers import Dense, Input, Flatten
from keras.layers import Conv1D, MaxPooling1D, Embedding, Dropout
from keras.models import Model
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import f1_score, accuracy_score
# read data
data = pd.read_csv("intent1.csv")
# split data into test and train
X_train, X_test, Y_train, Y_test = train_test_split(data
["Description"], data["intent_label"], test_size=6)
# label encoding for different categories of intents
le = LabelEncoder().fit(Y_train)
Y_train = le.transform(Y_train)
Y_test = le.transform(Y_test)
# get word_vectors for words in training set
X_train = [sent for sent in X_train]
X_test = [sent for sent in X_test]
# by default genism.Word2Vec uses CBOW, to train word vecs.

Мы также можем использовать с ним skipgram
# by setting the "sg" attribute to number of skips we want.
# CBOW and Skip gram for the sentence "Hi Ron how was your
day?" becomes:
# Continuos bag of words: 3-grams {"Hi Ron how", "Ron how was",
"how was your" ...}
# Skip-gram 1-skip 3-grams: {"Hi Ron how", "Hi Ron was", "Hi
how was", "Ron how
# your", ...}
# See how: "Hi Ron was" skips over "how".
# Skip-gram 2-skip 3-grams: {"Hi Ron how", "Hi Ron was", "Hi
Ron your", "Hi was
# your", ...}
# See how: "Hi Ron your" skips over "how was".
# Those are the general meaning of CBOW and skip gram.
word_vecs = Word2Vec(X_train)
print("Word vectors trained")
# prune each sentence to maximum of 20 words.
max_sent_len = 20
# tokenize input strings
tokenizer = Tokenizer()
tokenizer.fit_on_texts(X_train)
sequences = tokenizer.texts_to_sequences(X_train)
sequences_test = tokenizer.texts_to_sequences(X_test)
word_index = tokenizer.word_index
vocab_size = len(word_index)
# sentences with less than 20 words, will be padded with zeroes
to make it of length 20
# sentences with more than 20 words, will be pruned to 20.
x = pad_sequences(sequences, maxlen=max_sent_len)
X_test = pad_sequences(sequences_test, maxlen=max_sent_len)
# 100 is the size of wordvec.
embedding_matrix = np.zeros((vocab_size + 1, 100))
# make matrix of each word with its word_vectors for the CNN model.
# so each row of a matrix will represent one word. There will
be a row for each word in
# the training set
for word, i in word_index.items():
try:
embedding_vector = word_vecs[word]
except:
embedding_vector = None
if embedding_vector is not None:
embedding_matrix[i] = embedding_vector
print("Embeddings done")
vocab_size = len(embedding_matrix)
# CNN model requires multiclass labels to be converted into one hot ecoding.
# i.e. each column represents a label, and will be marked one
for corresponding label.
y = to_categorical(np.asarray(Y_train))
embedding_layer = Embedding(vocab_size,
100,
weights=[embedding_matrix],
input_length=max_sent_len,
trainable=True)
sequence_input = Input(shape=(max_sent_len,), dtype='int32')
# stack each word of a sentence in a matrix. So each matrix
represents a sentence.
# Each row in a matrix is a word(Word Vector) of a sentence.
embedded_sequences = embedding_layer(sequence_input)
# build the Convolutional model.
l_cov1 = Conv1D(128, 4, activation='relu')(embedded_sequences)
l_pool1 = MaxPooling1D(4)(l_cov1)
l_flat = Flatten()(l_pool1)
hidden = Dense(100, activation='relu')(l_flat)
preds = Dense(len(y[0]), activation='softmax')(hidden)
model = Model(sequence_input, preds)
model.compile(loss='binary_crossentropy',optimizer='Adam')
print("model fitting - simplified convolutional neural
network")
model.summary()
# train the model
model.fit(x, y, epochs=10, batch_size=128)
#get scores and predictions.
p = model.predict(X_test)
p = [np.argmax(i) for i in p]
score_cnn = f1_score(Y_test, p, average="micro")
print("accuracy_score:",accuracy_score(Y_test, p))
print("f1_score:", score_cnn)

Подходящая модель представляет собой упрощенную сверточную нейронную сеть, как показано здесь:
	Layer (Type)
	Output Shape
	Param #

	input_20 (InputLayer)
	(Нет, 20)
	0

	embedding_20 (Встраивание)
	(Нет, 20, 100)
	2800

	conv1d_19 (Conv1D)
	(нет, 17, 128)
	51328

	max_pooling1d_19  (MaxPooling)
	(Нет, 4, 128)
	0

	flatten_19 (Свести)
	(Нет, 512)
	0

	плотности_35 (Плотность)
	(Нет, 100)
	51300

	плотности_36 (Плотные)
	(Нет, 3)
	303



Вот номера параметров:
· Всего параметров: 105 731
· Обучаемые параметры: 105 731
· Необучаемые параметры: 0
Вот некоторые важные функции Word2vec с использованием пакета Gensim:
· Вот как вы импортируете Gensim и загружаете предварительно обученную модель:
import genism
#loading the pre-trained model
model = gensim.models.KeyedVectors.
load_word2vec_format('GoogleNews-vectorsnegative300.
bin', binary=True)

· Это предварительно обученная модель от Google для английского языка, имеющая 300 измерений.
· Вот как найти словесный вектор слова из предварительно обученной модели:
# getting word vectors of a word
lion = model['lion']
print(len(lion))

· Вот как найти индекс сходства между двумя словами:
#Calculating similarity index
print(model.similarity('King', 'Queen'))

· Вот как найти лишнее из набора слов:
#Choose odd one out
print(model.doesnt_match("Mango Grape Tiger
Banana Strawberry".split()))

· Вот как найти наиболее похожие слова:
print(model.most_similar(positive=[Prince,
Girl], negative=[Boy]))

Уникальная особенность Word2vec заключается в том, что вы можете получить векторы из других векторов с помощью векторных операций.
Например, вектор «Принц» минус вектор
“boy” plus a vector of “girl” will be almost equal to a
vector of “Princess.” Hence, when you compute this,
you will get a vector of “Princess.”
Vec ("Prince") – Vec("boy") + Vec("girl") ≈
Vec("Princess")

Это был просто пример. Этот случай справедлив во многих других случаях. Это назначение Word2vec и полезно при оценке похожих слов, следующих за этим словом, для генерации естественного языка (NLG) и так далее.
В таблице 17-1 показаны предварительно обученные модели с другими параметрами.
Таблица 17-1. Различные предварительно обученные модели с другими параметрами
	Модель файла
	Номер размер-ности
	Размер корпуса
	Размер словаря
	Архитек-тура
	Контекс окна
	Автор

	Новости Google
	300
	100B
	3M
	Word2Vec
	BoW, ~ 5
	Google

	Freebase IDs
	1000
	100B
	1.4M
	Word2Vec, Scip-gram
	BoW, 
~ 10
	Google

	Freebase names
	1000
	100B
	1.4M
	Word2Vec, Scip-gram
	BoW, 
~ 10
	Google

	Wikipedia + Gigaword 5
	50
	6B
	400,000
	GloVe
	10+10
	GloVe

	Wikipedia + Gigaword 5
	100
	6B
	400,000
	GloVe
	10+10
	GloVe

	Wikipedia + Gigaword 5
	200
	6B
	400,000
	GloVe
	10+10
	GloVe

	Wikipedia + Gigaword 5
	300
	6B
	400,000
	GloVe
	10+10
	GloVe

	Common Crawl 42B
	300
	42B
	1.9M
	GloVe
	AdaGrad
	GloVe

	Common Crawl 840B
	300
	840B
	2.2M
	GloVe
	AdaGrad
	GloVe

	Wikipedia dependency
	300
	-
	174,000
	Word2Vec
	Syntactic
	Levy&Goldberg

	DBPedia vectors (wiki2vec)
	1000
	-
	-
	Word2Vec
	BoW, 10
	Idio


17.5.1. Формирование ответа
Ответы — еще одна важная часть чат-ботов. В зависимости от того, как отвечает чат-бот, он может привлечь пользователя. Всякий раз, когда создается чат-бот, следует помнить о его пользователях. Вы должны знать, кто будет его использовать и с какой целью он будет использоваться. Например, чат-бота для веб-сайта ресторана будут спрашивать только о ресторанах и еде. Итак, вы более или менее знаете, какие вопросы будут заданы. Поэтому для каждого намерения вы сохраняете несколько ответов, которые можно использовать после определения намерений, чтобы пользователь не получал один и тот же ответ повторно. У вас также может быть одно намерение для любых вопросов вне контекста; у этого намерения может быть несколько ответов, и чат-бот может ответить случайным образом.
Например, если намерения «привет», у вас может быть несколько ответов, таких как «Привет! Как дела? " и «Здравствуйте! Как дела? " и «Привет! Могу я чем-нибудь помочь?"
Чат-бот может случайным образом выбрать любой ответ.
В следующем примере кода вы принимаете данные от пользователя, но в исходном чат-боте намерения определяются самим чат-ботом на основе любого вопроса, заданного пользователем.
import random
intent = input()
output = ["Hello! How are you","Hello! How are you doing","Hii!
How can I help you","Hey! There","Hiiii","Hello! How can I
assist you?","Hey! What's up?"]
if(intent == "Hii"):
print(random.choice(output))

17.6. Разработка чат-ботов с использованием API
Создание чат-бота — непростая задача. Вам нужно внимание к деталям и острый ум, чтобы создать чат-бота, который можно будет использовать с пользой. Есть два подхода к созданию чат-бота.
· Подход, основанный на правилах
· Подход к машинному обучению, который заставляет систему учиться самостоятельно, оптимизируя данные.
Некоторые чат-боты являются базовыми по своей природе, в то время как другие более продвинуты с искусственным интеллектом. Чат-боты, которые могут понимать естественный язык и реагировать на него, используют мозг ИИ, и энтузиасты технологий используют различные источники, такие как Api.ai, для создания таких чат-ботов с поддержкой ИИ.
Программисты используют следующие сервисы для создания ботов:
· Платформы Microsoft для ботов
· Wit.ai
· Api.ai
· IBM Watson
Другие энтузиасты по созданию ботов с ограниченными навыками программирования или без них используют платформы разработки ботов, такие как следующие, для создания чат-ботов:
· Chatfuel
· Texit.in
· Octane AI
· Motion.ai
Существуют разные API для анализа текста. Три основных гиганта выглядят следующим образом:
· Когнитивные службы Microsoft Azure
· Amazon Lex
· IBM Watson

17.6.1. Когнитивные службы Microsoft Azure
Начнем с Microsoft Azure.
· Интеллектуальная служба распознавания речи (LUIS):
Это предоставляет простые инструменты, позволяющие создавать собственные языковые модели (намерения/сущности), позволяющие любому приложению/боту понимать ваши команды и действовать соответствующим образом.
· API текстовой аналитики: оценивает настроение и темы, чтобы понять, чего хотят пользователи.
· Translator Text API: автоматически определяет язык, а затем переводит его на другой язык в режиме реального времени.
· API модели веб-языка: автоматически вставляет пробелы в строку слов, в которых отсутствуют пробелы.
· API проверки орфографии Bing: позволяет пользователям исправлять орфографические ошибки; распознавать разницу между именами, названиями брендов и сленгом; и понимать омофоны по мере их набора.
· API лингвистического анализа: позволяет вам идентифицировать понятия и действия в вашем тексте с помощью тегов частей речи и находить фразы и понятия с помощью синтаксических анализаторов естественного языка. Это очень полезно для сбора отзывов клиентов.

17.6.2. Amazon Lex
Amazon Lex — это сервис для создания диалоговых интерфейсов в любом приложении с использованием голоса и текста. К сожалению, нет варианта синонима, и нет надлежащего извлечения сущностей и классификации намерений.
Ниже приведены некоторые важные преимущества использования Amazon Lex:
· Это просто. Он поможет вам создать чат-бота.
· Он имеет алгоритмы глубокого обучения. Алгоритмы такие, поскольку NLU и NLP реализованы для чат-ботов. Amazon централизовал эту функциональность, чтобы ее можно было легко использовать.
· Он имеет простые функции развертывания и масштабирования.
· Имеет встроенную интеграцию с платформой AWS.
· Это рентабельно.

17.6.3. IBM Уотсон
IBM предоставляет IBM Watson API для быстрого создания собственного чат-бота. При реализации приближение к путешествию так же важно, как и само путешествие. Изучение основ диалогового дизайна Watson Conversational AI для предприятий и его влияния на ваш бизнес необходимо для разработки успешного плана действий. Эта подготовка позволит вам общаться, учиться и контролировать соответствие стандарту, что позволит вашему бизнесу создать готовый и успешный проект, готовый для клиентов.
Диалоговый дизайн — самая важная часть создания чат-бота.
Первое, что нужно понять, это кто пользователь и чего он хочет достичь.
В IBM Watson есть много технологий, которые вы можете легко интегрировать в свой чат-бот; некоторые из них — Watson Conversation, Watson Tone Analyzer, преобразование речи в текст и многие другие.
17.7. Лучшие практики разработки чат-ботов
При создании чат-бота важно понимать, что существуют некоторые передовые практики, которые можно использовать. Это поможет создать успешного, удобного для пользователя бота, который может выполнить свою задачу, чтобы вести беспрепятственный разговор с пользователем.
1. Одна из главных вещей в этом отношении — хорошо знать целевую аудиторию. Далее идут другие вещи, такие как определение сценариев использования, настройка тона чата и определение платформ обмена сообщениями.
2. Придерживаясь следующих передовых практик, стремление обеспечить бесшовные разговоры с пользователями могут стать реальностью.
3. Знайте потенциальных пользователей
4. Полное понимание целевой аудитории — первый шаг в создании успешного бота. Следующий этап — узнать, для какой цели создается бот.
Вот несколько моментов, о которых следует помнить:
· Знайте, какова цель конкретного бота. Это может быть бот, развлекающий аудиторию, помогающий пользователям заключать сделки, сообщающий новости или служащий каналом обслуживания клиентов.
· Сделайте бота более удобным для клиентов, узнав о продукте заказчика.
· Прочитайте мнения пользователей и создайте бот

17.8. Эмоционально обогащающий
Чат-бот должен быть теплым и дружелюбным, как и человек, чтобы общение было интересным. Он должен уметь читать, а также понимать настроения пользователей, чтобы продвигать блоки контента, которые могут побудить пользователя продолжить разговор. Пользователю будет предложено посетить его снова, если в первый раз он получил богатый опыт.
Вот несколько моментов, о которых следует помнить:
· Продвигайте свой продукт или превращайте пользователей в представителей бренда, используя положительные эмоции.
· Оперативно отвечайте на негативные комментарии, чтобы оставаться на плаву в игре разговоров.
· По возможности используйте дружественный язык, чтобы пользователи чувствовали, что они общаются со знакомым человеком.
· Сделайте так, чтобы пользователи чувствовали себя комфортно, повторяя входные данные и гарантируя, что они могут понять все, что обсуждается.
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